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Abstract
In this paper, a novel pipeline for loop closure detection is proposed. We base our work on a bag of binary feature
words and we produce a description vector capable of characterizing a physical scene as a whole. Instead of relying
on single camera measurements, the robot’s trajectory is dynamically segmented into image sequences according
to its content. The visual word occurrences from each sequence are then combined to create Sequence-Visual-
Word-Vectors and provide additional information to the matching functionality. In this way, scenes with considerable
visual differences are firstly discarded, while the respective image-to-image associations are provided subsequently.
With the purpose of further enhancing the system’s performance, a novel temporal consistency filter (trained off-line)
is also introduced to advance matches that persist over time. Evaluation results prove that the presented method
compares favorably with other state-of-the-art techniques, while our algorithm is tested on a tablet device verifying
the computational efficiency of the approach.
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1 Introduction

The problem of visual Place Recognition (vPR) refers
to the ability of a system to recognize a scene based
on visual sensing and it has been used during the last
decade in order to address many challenges in mobile
robotics. As part of a Simultaneous Localization And
Mapping (SLAM) system, vPR has been applied in
a variety of forms and alterations such as the Loop
Closure Detection (LCD) and the Re-Localization (RL)
procedures. An LCD engine is responsible for detecting
revisited trajectory regions and creating additional edge
constraints between the current and earlier pose nodes on
graph-based SLAM systems (Folkesson and Christensen
2004; Thrun and Montemerlo 2006; Grisetti et al. 2010).
Those additional edge constraints provide supplementary
information regarding the measurements’ arrangement in
the 3D space, and they can be used to further improve the
SLAM output in an on-line and/or post-processing manner
(Mur-Artal et al. 2015; Latif et al. 2013; Strasdat et al.
2010; Mei et al. 2009). Moreover, an RL system utilizes the
visual information in order to recover the robot’s position in
an already known environment (the problem of kidnapped
robot) or in localization failure scenarios (Konolige et al.
2010; Wolf et al. 2005; Mur-Artal and Tardós 2014). Even
though these challenges refer to different applications,

they share the same basic functionality of identifying a
previously visited scene and thus they can be addressed by
common solutions.

During the past decade a plethora of vPR techniques
have been presented in the literature. Williams et al. (2009)
distinguished the approaches into three main categories
with respect to the type of data they associate. In the
first category, referred to as Map-to-Map, correspondences
are found between features taking into account both their
appearance and their relative location inside the world.
Furthermore, Image-to-Map methods aim to recognize
places by associating features between the latest acquired
frame and a retained spatial representation of the already
seen world. Finally, Image-to-Image matching approaches
(or appearance-based techniques) detect correspondences
between the images themselves and present better scaling
capabilities in long trajectory cases.
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Figure 1. A 3D representation of the proposed loop closure detection pipeline tested on Malaga 2009 Parking 6L (Blanco et al.
2009) dataset. As the robot moves, the executed trajectory is segmented into intervals/sequences (illustrated with different
colors). The formulated S-VWVs are used to detect sequence matches (marked with the magenta plain) and signal the existence
of loop closing frames. The individual image-to-image associations (marked with green links) are provided via the individual
I-VWVs.

The most common approach for addressing appearance-
based LCD tasks refers to the characterization of each
individual frame by an aggregation of local image
descriptors. As the robot moves, revisited places are
detected by measuring content similarities between
the current input frame (query) and all the previous
ones (database). In order to provide efficiency in the
implementation, the model of Bag of Visual Words
(BoVW) can be utilized as a means of quantizing the
extracted descriptors’ space. In the general case, every
input frame is assigned with one Image-Visual-Word-
Vector (I-VWV). The entries of this vector correspond
to a weighted frequency of occurrence for every visual
word in the given image (histogram). The created I-VWVs
are treated as image descriptors, thus loop closing pairs
of camera poses are recognized by calculating similarity
metrics between them. The aforementioned approach was
initially inspired by image retrieval techniques (Sivic
and Zisserman 2003), yet in some vPR algorithms,
measurements obtained from close-in-time instances are
summed in order to enhance the results. Finally, it has been
proven that the representation of the created BoVW with
a tree structure (vocabulary tree) improves significantly the
computational efficiency (Nister and Stewenius 2006).

In this work, we present an improved pipeline
for appearance-based LCD which combines the visual
information from multiple frames in order to describe a
physical scene as a total. As the robot moves, the input
camera stream is dynamically segmented into intervals
(image sequences), based on the scene’s content variations.
For each image sequence, the extracted feature descriptors

are converted into visual words and combined to produce
one global Sequence-Visual-Word-Vector (S-VWV) as well
as the individual I-VWVs. Thus, the revisited trajectory
regions are detected on a first level by measuring the
similarities between all S-VWVs in the database, while the
loop closing frames are determined using the individual I-
VWVs only for the associated sequences’ image-members.
A typical example of the aforementioned procedure is
illustrated in Fig. 1. Note that henceforth, the term
“sequence” will refer to “sequence of images” for brevity.

The main contributions of the paper in hand can be
summarized as follows:

• Using a description vector capable of characterizing
an image sequence as a whole, our method provides
more information to the matching functionality
advancing the LCD performance. Additionally, since
we rely our pipeline on such a descriptor, rather
than accumulating the similarities between multiple
I-VWVs, the system’s performance is not restricted
by a per-frame perception of the environment.

• With the view to further enhance the produced
sequence similarity measurements, our algorithm
introduces a temporal consistency filter over the
similarity matrix entries. The corresponding kernel’s
coefficients are calculated using a cost function
minimization scheme on a set of training samples.

• The proposed methodology entails a reduced
computational complexity as compared to other
vPR techniques since our first level of sequence-to-
sequence matching excludes the trajectory regions
that are absolutely different in the general view.
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In addition, the nature of our pipeline provides an
efficient way to further reduce the visual word votes
by considering only the entries that persist during
the sequence formulation. An implementation of the
proposed algorithm is tested on a mobile device
utilizing the parallel execution capabilities of the
ARM-NEON co-processor and proving its ability to
run in real-time (in a sense of processing the input
faster or in equal time with the execution frequency
of a modern key-frame SLAM system) even in the
case of a less powerful machine.

A preliminary version of presented work was presented
in (Bampis et al. 2016). In this paper, we advance the
system’s performance by adopting a rotation and scale
invariant local feature descriptor and a dynamical sequence
identification technique, while additionally, we address the
temporal consistency filtering as a classification problem
operating on the sequence similarity scores. Furthermore,
we provide a complete justification of the benefits offered
by a unified VWV and extend our experiments to
fully evaluate the performance of our algorithm. Finally,
extensive comparative results are presented against other
state-of-the-art sequence-based vPR techniques, proving
the capabilities of the S-VWV based description.

The following section contains a discussion about
the related work on the field of vPR and subsequently
introduces the advantageous matching properties of the
introduced S-VWVs. Section 3 describes in details our on-
line pipeline together with the preprocessing steps for the
vocabulary tree formulation and filter training. In Section
4, our experimental evaluation and comparative results
against other state-of-the-art approaches are presented.
The computational benefits of the proposed approach,
together with the employed parallelization techniques and
implementation details of the tested mobile application, are
summarized and assessed in Section 5. Finally, Section 6
draws our final conclusions by describing our algorithm’s
potentials and contributions.

2 From Image to Sequence Description
In this section, we discuss some of the most representative
techniques in the field of appearance-based vPR with the
aim to lead our reader to the comprehension of the proposed
sequence description method. For an extended survey of
vPR, the reader can refer to the work of Lowry et al. (2016).

2.1 Single-Image based Visual Place
Recognition

Probably the most acknowledged method on the field
of vPR is FAB-MAP (Cummins and Newman 2008).
According to that method, co-currency probabilities
between observed visual words are used to perform

appearance-based vPR. Although FAB-MAP constitutes
the foundation for a plethora of later methodologies, it
suffers in terms of performance, when repetitive patterns
are accounted (Piniés et al. 2010), and execution time,
due to the expensive extraction and matching of SURF
features (Bay et al. 2006). In a later work, the same
authors introduced an improved sparse approximation of
their original technique, called FAB-MAP 2.0 (Cummins
and Newman 2011), allowing their system to scale by
more than two orders of magnitude. Another representative
approach was proposed by Angeli et al. (2008), where the
description relied on two visual vocabularies (one from
SIFT descriptors (Lowe 2004) and another from local color
histograms). Using a Bayesian filter, the detection was
enhanced taking into account the matching probability of
previously obtained measurements. Schindler et al. (2007)
provided a more sophisticated representation of the visual
vocabulary with a tree structure addressing city-scale vPR
challenges. In their work, the Greedy N-Best Paths (GNP)
algorithm was used so as to cluster the feature descriptors
incrementally.

More recent techniques have been deviated from the
aforementioned probabilistic approach of detecting loop
closures with floating-point descriptors, like SIFT or SURF,
offering faster but still competitive results (Mur-Artal
and Tardós 2014; Gálvez-López and Tardós 2012; Khan
and Wollherr 2015). More specifically, visual words from
binary features, found in every camera measurement, are
used in order to create image description vectors (I-VWVs).
Thus, the detection of revisited places is achieved by
obtaining similarity metrics, based on L1/L2 norm, between
the individual I-VWVs. Gálvez-López and Tardós (2012)
proposed a typical technique for this approach with the
DBoW2 algorithm. Since in their case the Bayesian filtering
was not included, the matching candidates were forced to
follow a temporal consistency constraint. Mur-Artal and
Tardós (2014), enforced DBoW2 by exploring the usage of
a more sophisticated binary descriptor (ORB (Rublee et al.
2011)) and provided a real-time vPR, RL and LCD system.

Additionally, since the off-line formulation of a visual
vocabulary is not suitable for every application, some
methods suggested the on-line development of a BoVW
by estimating an average representation of repetitive
descriptors. For instance, Labbe and Michaud (2013) for
large scale environments proposed the formulation of an
on-line vocabulary based on a randomized forest of kd-trees
achieving exquisite performance. Although their technique
is capable of recognizing revisited places in constant-
time, independently of the traversed trajectory’s length,
the computationally expensive SURF feature extraction
and the constant updates of their vocabulary render the
approach less appealing for normal scale scenarios (such
as 20K-30K input frames). Aiming for an immediate
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reduction of the execution time, Khan and Wollherr (2015)
proposed the on-line creation of a binary vocabulary based
on the insertion of new visual words each time an unfamiliar
descriptor is obtained. Since their method (IBuILD) utilizes
efficient binary operations, it constitutes a more attractive
solution in terms of computational complexity.

Recently, the concept of sequence-to-sequence matching
has also been introduced in the literature. Newman et al.
(2006) in their work for outdoor SLAM applications,
pointed out the advantages of matching sequences instead
of individual frames using an accumulative version of
similarity matrices. The same notion appears (even on some
abstract level) on other techniques as well (e.g. (Mur-
Artal and Tardós 2014; Gálvez-López and Tardós 2012))
proving that the LCD performance can be strengthened
when the visual information from more than one camera
measurements is considered. Even though those techniques
aim to take advantage of the additional information
from the entire scene, they treat each sequence as an
aggregation of image description vectors rather than visual
words, subjecting their matching procedure to a per-frame
view of the environment (visual words are redundantly
clustered by the camera measurements). On the contrary,
our method reformulates the process of creating VWVs and
consider the whole sequence as a single “super-frame”. This
approach offers invariance to the visual words’ distribution
over the camera measurements, and it will be further
analyzed in the following subsection.

Finally, sequence-based techniques have been reported
addressing the vPR task under extreme environmental
changes originated from different lighting conditions (day
and night) or year seasons (Milford and Wyeth 2012;
Arroyo et al. 2015). Even though the choice of more
traditional local feature descriptors is avoided (due to their
inability of matching under such intense environmental
changes (Valgren and Lilienthal 2010)), the usage of
global sequence descriptors is proven to be crucial for the
achieved performance. Most lately, condition-invariant vPR
techniques have been presented based on the classification
characteristics of Convolution Neural Networks (CNNs).
Methods like the ones presented by Sünderhauf et al.
(2015a,b) and Arroyo et al. (2016) treat the output of
particular CNN layers, initially trained for object detection
tasks, as image descriptors and address the vPR problem
by measuring distances between them. Even though CNN-
based techniques offer superior retrieval performances,
they are still decoupled from the LCD and SLAM
functionalities. Sizikova et al. (2016) and Fei et al. (2016)
in their respective works, accurately pointed out the CNN’s
dependence over viewpoint-invariant surface appearances
and the lack of topological information at the higher
networks’ levels, which characterize them as suboptimal for
LCD tasks. On the contrary, local feature-based techniques

are widely used in visual SLAM applications (Mur-Artal
et al. 2015; Lim et al. 2014; Davison et al. 2007; Klein
and Murray 2007; Cieslewski and Scaramuzza 2017) and
they can be efficiently combined with an illumination
invariant image representation technique (e.g. (Shakeri and
Zhang 2016; Maddern et al. 2014)) to further improve
their robustness over the potential environmental changes.
However, such an application is beyond the scope of this
paper and thus it is not further discussed.

2.2 Establishing the Necessity of
Sequence-Visual-Word-Vectors

Given an actual pair of loop closing images, there is
no guarantee that a sufficient subset of common visual
words will be detected in every case since a single
image can be subject to aliasing, contain noise and/or
moving objects, etc. Thus, it is expected that an absolute
thresholding, over the similarity scores between single
instances, would fail in detecting some of the trajectory’s
loops, or it would also result in many false-positive
detections (when a tolerant thresholding is applied). Many
existing techniques (e.g. (Mur-Artal and Tardós 2014;
Gálvez-López and Tardós 2012; Newman et al. 2006;
Milford and Wyeth 2012)) choose to support their detection
by accumulating the similarity metrics (FI(I1, I2)) from
many images acquired close-in-time. In the general case,
succeeding frames are treated as sequences of multiple I-
VWVs. These groups of I-VWVs (for instance S1 and
S2) are then compared to the database and assigned with
a additive score of FS(S1, S2) =

∑i∈S1,j∈S2

i,j FI(Ii, Ij).
Although this approach produces effective results, it is
limited to a per-frame representation of the environment
rather than offering a description of the whole sequence.
Considering a simple example as the one presented in Fig.
2a, each visual word of a given scene may not constantly
be inside the camera’s frustum or, for any reason, not found
by the feature detector (Fig. 2b). This inconsistency entails
I-VWVs with considerably uneven values even though they
refer to the same scene. As a result, the FS(S1, S2) scores
often lead to a false interpretation of the actual sequences’
similarity in a variety of operational scenarios.

With the above notion in mind, the aforementioned
approaches can be characterized as sequence matching
techniques rather than sequence descriptive ones. As
opposed to treating a sequence as the summation of
individual matching scores, our method achieves a
description vector that contains every visual word found
in the scene. Using a computationally efficient approach,
for a given sequence of images, the visual words found in
every camera measurement are gathered and vote on the
respective bin of a common description vector (S-VWV).
Note that multiple instances corresponding to the same
visual word (i.e. a visual word observed by multiple frames)
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(a) A simplistic real word example with the robot passing
through the same scene twice (camera pose sets 1.x and
2.x). A different subset of the scene’s visual words is
observed by each pose.

Image 1.1 

I-VWV 1.1 

Image 1.2 

I-VWV 1.2 

Image 1.3 

I-VWV 1.3 

Image 2.1 

I-VWV 2.1 

Image 2.2 

I-VWV 2.2 

Image 2.3 

I-VWV 2.3 

(b) The input images produce I-VWVs with considerably
uneven structures between sequences 1.x and 2.x.

Sequence 1 

S-VWV 1 S-VWV 2 

Sequence 2 

(c) The proposed S-VWVs contain the vocabulary entries
found during each sequence in a common description vector
as if they were observed by two “super-frames”.

Figure 2. The efficiency of the proposed loop closure detection approach with a simplified real word scenario.

are treated as one since they refer to the same feature inside
the world. A worth noticing realization here is that the
proposed S-VWV to S-VWV matching would present the
same results with the earlier approaches only under the false
assumption that the used similarity metrics preserved the
additive property of linear mapping. As it can be seen in
Fig. 2c, our method produces description vectors with better
matching properties as it is confirmed by our experimental
evaluation (see Section 4).

A similar evaluation of such a unified description has
been reported by MacTavish and Barfoot (2014). In their
work, sequence-based descriptors were assessed for a
variety of different but fixed sized image-groups, while
the matching was achieved using a FAB-MAP based
probabilistic scheme. Parallel to this notion, our previous
work (Bampis et al. 2016) deviated from the probabilistic
matching solution and introduced a temporal consistency
filtering to further improve the results. As mentioned
before, the method in hand incorporates a dynamical
sequence distinction technique, allowing for sequences of
varying size to be formulated, while additionally, addresses
the filtering as a classification procedure. Finally, a unified
description was also achieved by the work of Lynen
et al. (2014). Although their system allowed for the
detected features to be matched against the whole database
(regardless the image they belonged to), the method was
restricted to operate off-line, after the conclusion of the full

trajectory, while the sequence formulation was performed at
query time. On the contrary, here the sequence distinction
and matching is achieved on-line, as the trajectory escalates,
quantizing the searching space through the means of BoVW
model.

3 Proposed Methodology
Our on-line LCD algorithm is divided into two main steps
while the vocabulary and the filter’s kernel coefficients
are learned off-line through a training scheme. In the first
step of the proposed on-line pipeline, sequence matches
are detected, while the individual image associations are
extracted in the second one.

3.1 Vocabulary Training
In order to quantize the feature descriptors’ space, a
visual vocabulary needs to be created. Aiming to offer a
real-time implementation, we choose to utilize the binary
description of ORB. In an off-line step, a generic set of
training descriptors is provided as input to a k-median
hierarchical clustering, with k-means++ seeding (Arthur
and Vassilvitskii 2007) and Hamming as the distance
metric. In accordance to the conclusions drawn by Nister
and Stewenius (2006) and Gálvez-López and Tardós (2012)
we formulate a vocabulary tree with L = 6 levels and
K = 10 branches per level leading to a total set of W =
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KL discrete visual words wi (i ∈ [1,W ]). Two different
kinds of multisets need to be defined here, namely NDi
and ND, corresponding to the i-th word’s occurrences and
the total visual words occurrences in the training dataset,
respectively.

3.2 Creating Sequence and Image
Descriptors

The main objective of our sequence distinction functional-
ity does not refer to the actual semantics of the observed
environment, but rather to identify groups of frames that
share common features. To achieve a dynamical partition
of the image stream, we utilize the variance of the obtained
visual words. At a time instant t, during the sequence’s St
formation, an occupancy vector V OSt

is retained to keep track
of the already seen visual words. This binary vector, rep-
resented as V OSt

= [wo1, ... , w
o
i , ... , w

o
W ], shares the same

length with the vocabulary, while each value woi declares
the existence (woi = 1) or absence (woi = 0) of the corre-
sponding word wi in the current sequence. As the robot
moves, the Nf most prominent ORB features are extracted
using the oFAST algorithm (the orientation invariant alter-
ation of FAST (Rosten and Drummond 2006) proposed by
Rublee et al. (2011)) from every input image. The descrip-
tors are then mapped into visual words through the created
vocabulary and marked asNEW (firstly seen during St) or
OLD (already seen during St) by checking their indexes
with vector V OSt

. Thus, using a “visual word variance”
metric defined as σv = NNEW / (NNEW +NOLD), we
signal the completion of the current St and the beginning
of a new St+1 each time σv > rv , with rv being a visual
word variance above which, the input frame does not share
enough of visual words with the rest of the sequence.
NNEW , NOLD denote the number of visual words marked
as NEW or OLD, respectively. Using the above metric, a
new sequence is instigated when the percentage of NEW
visual words dominates the entire set of the input image’s
features. Then, the new vector V OSt+1

is initialized to zero,
and the same procedure is repeated for the next sequence.
In the case of σv ≤ rv , the V OSt

vector is updated with the
marked as NEW visual words and the following input
image is characterized as a member of the current St.
We additionally force a maximum and minimum visual
words’ capacity for the sequences, preventing their uncon-
trolled growth and allowing the V OSt

vectors to initialize at
least some elements. Finally, images that do not contain
a minimum number of visual words are rejected as less
informative.

Having a completed sequence S withM image-members
Im (m ∈ [1,M ]) we now proceed to its description. The
following visual words multisets need to be defined.
MultisetsNSi andNImi are defined as the i-th visual word’s
occurrences in sequence S and image Im, respectively.

Additionally, NS and N
Im are defined as the total

visual word’s occurrences in S and Im, respectively. The
aforementioned multisets are governed by:

N
S
i =

M⋃
m=1

N
Im
i (1)

N
S =

M⋃
m=1

N
Im (2)

The widely used “term frequency - inverse document
frequency” (tf-idf) (Sivic and Zisserman 2003) was
selected as a means of defining each visual word’s
participation and creating the following VWVs: (i) one
S-VWV (v̄(S)) describing the whole observed visual
content of the sequence’s respective area and (ii) M
I-VWVs (v̄(Im)) for the individual image-members.
These descriptors –v̄(S) =

[
v
(S)
1 , ... , v

(S)
i , ... , v

(S)
W

]
and

v̄(Im) =
[
v
(Im)
1 , ... , v

(Im)
i , ... , v

(Im)
W

]
– are calculated via:

v
(S)
i =

NS
i

NS
log

ND

ND
i

(3)

v
(Im)
i =

N Im
i

N Im
log

ND

ND
i

(4)

where NS
i =

∣∣NSi ∣∣, N Im
i =

∣∣∣NImi ∣∣∣, NS =
∣∣NS∣∣, N Im =∣∣NIm ∣∣, ND

i =
∣∣NDi ∣∣ and ND =

∣∣ND∣∣, with the notation
|X| representing the cardinality of multiset X. Equation
4 refers to the description of the individual frames, while
using eq. 3 we are able to create a global description
with better sequence matching capabilities, as described in
Section 2.2. Note that the additional computational burden
for producing two versions of VWVs is negligible, since the
most time consuming part of the process (the tree traversal)
is executed only once per visual word.

Finally, to restrict the matching search only between
S-VWVs that include mutual visual information, inverted
indexing is applied (Jegou et al. 2008). A set of W lists
(one for every visual word wi) is retained, keeping track of
sequence indexes whose S-VWVs contain common visual
words. Thus, sequence similarity scores are calculated
through the inverted indexing list, achieving a reduction of
the computational complexity.

3.3 Sequences-to-Sequence Matching
In order to match the individual sequences, we make use
of a similarity metric based on L2-norm. More specifically,
using an L2-score similarity between a query (Sq) and a
database (Sd) sequence that the inverse indexes indicate:

L2
(
v̄(S)q , v̄

(S)
d

)
= 1− 0.5

∣∣∣∣∣∣ v̄
(S)
q∣∣∣v̄(S)q

∣∣∣ − v̄
(S)
d∣∣∣v̄(S)d

∣∣∣
∣∣∣∣∣∣ (5)
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we obtain a metric that produces higher values as the
vectors become more similar. As the trajectory escalates,
the calculated L2-scores can be arranged to incrementally
formulate a similarity matrix MS as the one presented
in Fig. 3a. This matrix is symmetric with each element
containing a corresponding normalized (Gálvez-López and
Tardós 2012) L2

(
v̄
(S)
i , v̄

(S)
j

)
measurement.

A naive approach to detect loop closing sequences
would be to apply an absolute thresholding over the
values of matrix MS . With the view to further enhance
the cases of sequence matches with indexes that advance
concurrently along time (Si±k-to-Sj±k, k = 0, 1, 2, ...),
we propose a novel temporal consistency filtering, the
coefficients of which are trained in an off-line step.
Quantitatively interpreting the temporal constrain, we
expect this filter to advance a sequence similarity
score L2

(
v̄
(S)
i , v̄

(S)
j

)
proportionally to the values of

L2
(
v̄
(S)
i±k, v̄

(S)
j±k

)
. In the same fashion, the filter should

penalize the L2
(
v̄
(S)
i , v̄

(S)
j

)
proportionally to the scores

of L2
(
v̄
(S)
i±k1 , v̄

(S)
j±k2

)
, with (k1 6= k2). In other words, the

resulting similarity measurement between sequences Si and
Sj will tend to become higher as the respective sub-matrix
(mS) of MS –centered around the (i, j) entry– comes closer
to a diagonal view (e.g. Fig. 3b) and by analogy lower in
cases of temporal inconsistency (e.g. Fig. 3c). Considering
an example of window size wF = 3 (corresponding to k =
1), those two notions can be efficiently combined into a
filter kernel with the following structure:

F =

 α0 −α1 −α2

−α3 α4 −α5

−α6 −α7 α8

 (6)

with αi ≥ 0. The correlation operation of F with the MS

matrix results to a more intelligible interpretation (MF
S ), as

shown in Fig. 3d. In order to avoid the manual selection
of the F coefficients and its size, an off-line supervised
training scheme based on cost function minimization is
formulated. Another way to consider our consistency filter
is as a classifier that separates the loop closing (class
LC) similarity measurements from the non-closing ones
(class N-LC). For each tested sequence pair <Si, Sj>,
this classifier uses the corresponding mS neighborhood
(i.e. a window around MS (i, j) of wF × wF size), as a
descriptor and decides whether it should fall into category
LC or N-LC. Thus, we adopt a logistic-regression approach
and we search for a first order multivariate polynomial,
with coefficients θ̄ = [θ0, θ1, ..., θn]

T , for which x̄ · θ̄ ≥ 0
indicates the detection of a sequence loop closure event.
Note that x̄ = [1, x̂1, ..., x̂n] denotes the rearrangement of
a mS sub-matrix’s entries into a normalized feature vector
format and n = w2

F . The normalization x̂i = xi/max (xi),
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(a) Unfiltered similarity matrix MS .
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(c) mS to
diminish.

20 

100 

180 

20 100 180 

Max 

Min 

S
eq

u
en

ce
 I

n
d
ex

es
 

Sequence Indexes 

(d) Filtered similarity matrix MF
S .

Figure 3. Impact of the proposed consistency filter on the
sequence similarity matrix. The filtered similarity entries
corresponding to loop closure events are easily separable
from the non-loop closing ones. Note that MS and MF

S are fully
formulated only for visualization purposes. During the on-line
algorithm execution, the matrices are only partially computed
due to the incorporated inverse indexing.

xi ∈ mS provides the required invariance over any
similarity scale. Consequently, the values of θ1 to θn
correspond to the filter’s coefficients (eq. 6), while rs =
−θ0 can be characterized as a threshold that should be
applied over the MF

S entries to identify the loop closing
sequences. The final cost function minimization scheme is
governed by:

θ̄ = argmin
θ̄

J(θ̄) (7)

J(θ̄) = − 1

ltr

ltr∑
i=1

[
y
(i)
tr log hθ(x̄

(i)
tr , θ̄) +

+
(

1− y(i)tr
)

log
(

1− hθ(x̄(i)
tr , θ̄)

)] (8)

hθ(x̄, θ̄) =
1

1 + ex̄·θ̄
(9)

In eq. 8, ltr denotes the size of the learning set, while x̄(i)
tr

and y(i)tr denote the individual training feature vectors and
their corresponding loop closure ground-truth, respectively.
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Since two classes are used, we assign y
(i)
tr = 1 to the

training LC elements and y(i)tr = 0 to the N-LC ones. The
above set of equations corresponds to a standard binary
logistic-regression formulation. Looking for a hypothesis
vector θ̄ with the characteristics explained before, the
sigmoid function of eq. 9 maps the range R of x̄ · θ̄
output into the interval (0, 1). Then, the first summation
term of eq. 8 quantifies the cost of x̄ · θ̄ < 0 for the
ground-truth LC training sample, while the second one
quantifies the cost of x̄ · θ̄ ≥ 0 for the N-LC ground-truth
cases. Finally, the hypothesis vector θ̄ can be achieved
by minimizing the total cost (eq. 7) through gradient-
descent, with the training samples being already normalized
into the interval [0, 1]. The selection of logistic-regression
as a classification technique is justified due to its high
tolerance over unbalanced training samples. As King and
Zeng (2001) and Crone and Finlay (2012) pointed out, this
effect can be accounted when the training and testing data
contain approximately the same amount of LC and N-LC
events, as to be further considered during the learning phase
in Section 4.1.3.

Moreover, in order to select the window size wF , we
formulate a cross-validation step using another standing-
apart set of feature vectors, x̄(i)

cv . We assess multiple
filter size scenarios (wF = 2, 3, 4, 5, 6, 7) corresponding to
multiple feature vector’s lengths n = w2

F and we create a
θ̄h hypothesis for each one of them (h ∈ [0, 5]). Next, the
cross-validation error for every θ̄h is evaluated using:

Jcv(θ̄h) =
1

2lcv

lcv∑
i=1

(
hθ(x̄

(i)
cv , θ̄h)− y(i)cv

)2
(10)

while the hypothesis producing the smaller Jcv (θ̄h) is
going to be adopted for the final filter’s kernel. Similar
attempts to influence the values of MS matrix can be found
in other techniques as well (Newman et al. 2006; Milford
and Wyeth 2012), yet in our case, the filtering is interpreted
as a classification approach. It should also be noted that
during the on-line execution of our algorithm, the only mS

sub-matrices that we need to formulate and filter are those
indicated by the inverse indexing lists. Thus, the MS and
MF
S matrices retain a sparse representation.
Filtered matching scores overpassing rs = −θ0 (or

equivalently, matching scores with x̄ · θ̄h ≥ 0) are con-
sidered to contain loop closure frame candidates and
the next step of our method refers to their individ-
ual image-members associations. The sequence distinction
technique described in Section 3.2 does not ensure that
the produced trajectory intervals are going to be aligned
between multiple traversals of the same area. Thus, some
image-members of the query Sq may actually need to
be matched with the members of different neighboring

database sequences. For this reason, we allow each Sq to be
associated with multiple Sd, as long as they are subsequent.

3.4 Image-to-Image Matching
In order to provide a typical LCD technique, our method
should provide image-to-image pairs as a final output.
Although we find our sequence matches sufficient enough,
so as to detect revisited regions of the trajectory, it is
possible for some camera poses to be associated without
necessarily observing the same content. One can consider
the example of two trajectory tracks that, even though
remain parallel and spatially close to each other for the
majority of their length, their respective courses slowly
deviate until they observe significantly different views.
The corresponding two sequences, assigned to those tracks
(Sm1 and Sm2 ), are naturally going to be matched despite
that their last camera measurements may not correspond
to loop closure events. In such a scenario, during the
slow deviation of the trajectories, the visual content from
both sequences does not drastically change, preventing
the activation of our visual word variance constraint and
the further segmentation of the sequences. In those cases,
a simple “one-to-one” pairing would fail, since the last
image-members of Sm1

and Sm2
should not be considered

as loop closures. To address those cases, the individual I-
VWVs need to be considered. For a highly accurate SLAM
system, it would be sufficient to detect a single pair of loop
closing camera poses per sequence match using the highest
L2-scoring I-VWV pair. Yet, as a general rule (assuming
an odometry with low accuracy), we need to seek for as
many detections as possible. More specifically, for every
image-member of Sm1

we seek in its paired sequence Sm2

(or paired sequences, if more than one associations were
produced by the previous step) for the image that produces
the maximum I-VWV L2-score. Subsequently, in order
to reject image-pairs that cannot be visually associated, a
loop closure event is identified if the measured similarity is
greater than a threshold ri. A common practice for many
LCD systems (e.g. (Gálvez-López and Tardós 2012; Mur-
Artal et al. 2015; Lynen et al. 2014; Bampis et al. 2016))
is to apply a final geometrical-verification test in order to
accept a loop closing pair of images. Since such tests are
based on the computationally expensive estimation of a
valid camera transformation matrix, the ri threshold must
be decided so as to reduce the geometrical-verification steps
to the minimum required by the SLAM and the pose-graph
optimization technique (Latif et al. 2013).

4 Results
In this section we evaluate the individual components of our
system and we compare the achieved overall performance
against other state-of-the-art methods. In order to measure
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Table 1. Properties of the used datasets.

Dataset Enviroment Conditions Camera position Image size

Training /
Cross-validation

Bovisa 2008-09-01 Indoors & Outdoors Static Frontal 320×240

Bicocca 2009-02-25b Indoors Static Frontal 640×480

New College Outdoors Dynamic Frontal 512×384

Lip6 Indoor Indoors Static Frontal 240×192

Lip6 Outdoor Outdoors, Urban Highly dynamic Frontal 240×192

Testing

Malaga 2009 Parking 6L Outdoors Slightly dynamic Frontal 1024×768

City Centre Outdoors, Urban Dynamic Lateral 640×480

KITTI Seq. 00 Outdoors, Urban Dynamic Frontal 1241×376

KITTI Seq. 05 Outdoors, Urban Dynamic Frontal 1241×376

the accuracy of an implementation we utilize the Precision-
Recall metrics. As a reminder, Precision is defined as the
ratio between accurately detected loop closing frames (true-
positive) and the total number of detections returned by
the method (true-positive plus false-positive). Additionally,
Recall is defined as the true-positive detections found, over
the total number of loop closing frames that exist in the
used dataset (true-positive plus false-negative). For our
experiments, we consider a sequence match as true-positive
if at least one loop closing camera pose is contained. Nine
different datasets (indoors and outdoors) were used for
our experiments, namely Bovisa 2008-09-01 (RAWSEEDS
2007-2009) (BV), Bicocca 2009-02-25b (RAWSEEDS
2007-2009) (BC), New College1 (Smith et al. 2009) (NC),
Lip6 Indoor (Angeli et al. 2008) (L6I), Lip6 Outdoor
(Angeli et al. 2008) (L6O), Malaga 2009 Parking 6L
Blanco et al. (2009) (MG6L), City Centre (Cummins
and Newman 2008) (CC), KITTI sequence 00 (Geiger
et al. 2013) (KITTI00) and KITTI sequence 05 (Geiger
et al. 2013) (KITTI05). Regarding the KITTI dataset we
considered only sequences 00 and 05 since, among the
rest, they provide the most meaningful loop closure events
in urban and long-term operational conditions. Table 1
contains a brief description for every case. Datasets BC
through L60 were used as training and cross-validation
sets for our method’s parameters, while the remaining
ones (MG6L through KITTI05) were treated as testing
cases measuring the performance of our final system. In
such way, the achieved detection accuracy is not directly
influenced by the algorithm’s optimization, thus offering
a fair evaluation. Note that the loop closure ground-truth
information for the cases of BC, NC, MG6L and CC
was manually-created within the work of Gálvez-López
and Tardós (2012). L6I and L6O datasets contain their
own ground-truth information as provided by Angeli et al.
(2008), while for the KITTI sequences, this information
was obtained through the corresponding odometry data.

4.1 Off-line Training and Performance
Evaluation

4.1.1 Vocabulary training: Using a vocabulary training
set corresponding to a specific environment with limited
visual variations, inevitably biases the system’s perfor-
mance to the respective operational conditions. Within the
scope of this work, we aim to create a vocabulary able to
perform on a variety of indoors and outdoors conditions.
In accordance to those terms, the BV dataset was selected
as a standing-apart training sample in order to offer an
objective evaluation. Using 10K frames, a set of 9M ORB
descriptors was extracted and used as an input to our
hierarchical clustering. Thus, a binary vocabulary tree was
produced retaining a total of 106 discrete visual words as
leaf nodes.

4.1.2 Trajectory segmentation: As described in Section
3.2, our algorithm dynamically separates the input image
stream into sequences based on the observed visual words’
variance. Considering the system’s overall performance as
a final objective, a validation test based on Precision-Recall
metrics was formulated in order to measure the effect of
different rv . Multiple values were selected and assessed on
the four training datasets. In this step, the production of
Precision-Recall measurements is not straightforward since
our system does not create any loop closure output during
the sequences’ partition. To that end, we temporarily fixed
the kernel of our consistency filter on having all its αi
elements equal to zero except from α4 = 1, canceling its
effect on the detection and promoting rs to a means of
alternating the Precision-Recall measurements. Figures 4a
through 4d show the most informative curves we obtained
by considering sequence matches for every training dataset,
respectively. The curves shown in Fig. 4e were created
accordingly by treating all the datasets as a unified one
(just as the same robot traveled through every dataset,
one after another). Note that for a range of rv values
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(a) Bicocca 2009-02-25b (b) New College

(c) Lip6 Indoor (d) Lip6 Outdoor

(e) Unified

Figure 4. Precision-Recall curves for different rv values tested on various training datasets. All instances from datasets (a)
through (b) are considered to comprise a unified one (e). The best performance is obtained within the range of [0.6, 0.8].
Considering the unified dataset, rv = 0.75 corresponds to the highest achieved Recall rate.

I
tS

I
t-1S

(a) Bicocca 2009-02-25b

I
tS

I
t-1S

(b) New College

Figure 5. Resulting sequences (represented with different colors) for the selected value of rv = 0.75. The trajectory is
segmented when the input frame does not contain a sufficient number of common visual words with the rest of the sequence.
Representative examples of frames signaling the beginning of a new sequence (ISt ), together with the last image-member of the
previous sequence (ISt−1 ), are highlighted for each dataset.
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Figure 6. Consistency filter training results.

Table 2. Tested sequence distinction approaches.

Method Recall (%)
Average Execution

Time (ms)

Progressive L2-score 68.12 0.14

Visual Word Variance 67.54 0.01

Windowed
Progressive L2-score 69.85 0.77

Windowed
Visual Word Variance 68.01 0.12

Image Islands 74.36 8.84

between 0.6 and 0.8 the achieved performance remains
relatively stable. Considering the BC dataset, it appears
that the best performance is achieved using a visual word
variance threshold of rv = 0.6 while for the case of NC
the most beneficial case was rv = 0.75. This is owned to
the fact that BC corresponds to an indoor environment,
therefore visual changes tend to be more severe than NC.
Given a specified application scenario (indoors/outdoors,
dynamic/non-dynamic, frontal/lateral camera view, etc.),
the most appropriate rv value can be selected accordingly.
Though, in this paper we aim for a generic setup and
thus the value of rv = 0.75 was adopted. The resulting
sequences for the most representative regions of BC and NC
(containing turning points and sight changes) are shown in
Fig. 5. Note that for the L6I and L6O datasets no odometry
ground-truth is provided by Angeli et al. (2008).

The proposed visual word variance metric is not
the only kind of measurement considered for our
methodology. Other approaches, capable of running in
real-time and on-line (while the robot is moving) without
the requirement of the whole database beforehand, were
also examined. Table 2 presents some of the evaluated
techniques together with their respective best-case Recall

rates (for 100% Precision) and average execution time,
tested on the aforementioned unified training dataset.
Method “Progressive L2-score” marks the completion of
a sequence each time the L2-score between the current
and the previously acquired input frame becomes smaller
than a certain level, while method “Visual Word Variance”
refers to the proposed approach that we previously
evaluated. Methods “Windowed Progressive L2-score” and
“Windowed Visual Word Variance” apply an additional
averaging sliding window over the two aforementioned
metrics. According to them, the mean values of L2-score
and σv are calculated respectively, between the current and
the last p input frames. Thus, the most recent sequence is
finalized each time the average L2-score becomes lower
than a certain level (“Windowed Progressive L2-score”), or
when the average σv becomes higher than one (“Windowed
Visual Word Variance”). These approaches were selected
with the aim to prevent the unnecessary partition of the
input stream when an instantaneous change of the view
occurs (e.g. instantaneously looking sideways) while the
robot is still located in the same scene. Interestingly, the
two methods did not provide any considerable advantage
to the system’s performance. This is owed to the fact that
even if a continuous trajectory region is segmented without
a semantic meaning, the produced additional sequences
can all still be matched to a potentially loop closing
non-segmented database entry. The only disadvantage
of such a division is the additional processing steps
induced by the unnecessary segmentation of the searching
space. Yet, as it can be seen in Table 2, the continuous
calculations of the extra L2-score or σv measurements
render the window-based approaches as unfavorable,
compared to their corresponding straightforward ones.
Finally, method “Image Islands” is inspired by the
techniques described by Gálvez-López and Tardós (2012)
and Milford and Wyeth (2012). The procedure starts with
the calculation of the L2-scores between the I-VWVs.
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Figure 7. Precision-Recall curves measuring the final
performance of the proposed system on every training dataset.

Then, close-in-time sets of images that present considerable
similarity scores with the database are grouped in order
to create the required sequences. The remaining frames
are not employed. The rest of the proposed steps (S-VWV
formulations/comparisons, etc.) remain the same. As seen,
although the last approach presents higher Recall rates
for 100% Precision accuracy, it is still the most costly in
terms of execution time. Considering a case of a powerful
processing architecture, the “Image Islands” approach
would be the most beneficial approach for distinguishing
the required sequences. Yet, within the scope of this paper,
time efficiency is crucial and thus the proposed visual
word variance is adopted since it achieved a nice trade-off
between performance and operational frequency.

4.1.3 Temporal consistency filter: The following set of
parameters that we need to assess is the coefficients
of the proposed temporal consistency filter. Once more,
the same four training datasets were selected and the
corresponding MS matrices were formulated using the
procedure described in Section 3.3. The concatenation of
all four MS resulted into a training sample that contained
a representative ratio between LC (Fig. 3b) and N-LC
(Fig. 3c) events allowing the classifier to address analogous
cases during its on-line execution. Yet, given a specified
operational environment, the estimated hypothesis vector
can be accordingly adjusted to fit each particular sample
distribution without the need of retraining the whole
system, as described by King and Zeng (2001). The
sample was further separated into two subsets, namely
training (x̄(i)

tr ) and cross-validation (x̄(i)
cv ), containing 70%

and 30% of the total loop-closing and non-loop-closing
entries, respectively. Using eq. 7 through 9 for every
filter size scenario, we obtained six different hypothesis
vectors θ̄h. The rates of convergence for each one of
them are shown in Fig. 6a, while Fig. 6b contains their
respective cross-validation error. The winning hypothesis
θ̄
w
1 = [θw0 , θ

w
1 , ..., θ

w
9 ]
T (h = 1) corresponds to a filter size

of wF = 3. Thus, the filter’s kernel was found using the

Figure 8. Achieved Recall rates corresponding to 100%
Precision for each one of the main matching procedures. The
evaluation was performed on the four testing datasets using a
fixed parameter set presented in Table 3.

Table 3. Parameter setup.

Tree branches (K) 10
Tree levels (L) 6

ORBs/frame (Nf ) 300

Visual Var. (rv) 0.75

Filter Kernel (F )

 2.31 −0.57 −1.88
−0.41 2.19 −0.75
−1.83 −0.34 2.15


Seq. Matching (rs) 3.5

Image Matching (ri) 0.25

values of θw1 , ..., θ
w
9 as:

F =

 2.3088 −0.5663 −1.8762
−0.4084 2.1938 −0.7538
−1.8333 −0.3420 2.1512

 (11)

Additionally, considering that θw0 converged into the value
of −3.5, we found rs from rs = −θw0 = 3.5. The filtered
similarity matrix MF

S in Fig. 3d was produced by applying
the kernel of eq. 11 over the MS entries of BC dataset. Here,
we need to point out that the feature vector converged into
a kernel with the same structure as the one of eq. 6, proving
that our temporal consistency objective is admissible and
achieved.

4.1.4 Overall performance: Using the aforementioned
trained filtering, the overall performance of our pipeline
was evaluated for each training dataset. By varying
threshold ri and considering image-to-image matches, we
acquired the Precision-Recall curves presented in Fig. 7.
In order to test our whole methodology on some standing-
apart cases, we used the MG6L, CC, KITTI00 and KITTI05
datasets. Figure 8 shows the Recall rates corresponding
to 100% Precision for each proposed matching step. The
used parameter setup is summarized in Table 3. The
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True-Negative

Detection

True-Positive

Detection

Figure 9. Loop closure detection results on the Bicocca 2009-02-25b dataset. The respective camera poses are marked with
red. Representative true-negative and true-positive examples are highlighted.

True-Negative

Detection

True-Positive

Detection

Figure 10. Loop closure detection results on the New College dataset. The respective camera poses are marked with red.
Representative true-negative and true-positive examples are highlighted.
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True-Negative

Detection

True-Positive

Detection

Figure 11. Loop closure detection results on the Malaga 2009 Parking 6L dataset. The respective camera poses are marked
with red. Representative true-negative and true-positive examples are highlighted.

True-Negative

Detection

True-Positive

Detection

Figure 12. Loop closure detection results on the City Centre dataset. The respective camera poses are marked with red.
Representative true-positive and true-negative examples are highlighted.
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True-Negative DetectionTrue-Positive Detection

Figure 13. Loop closure detection results on the KITTI sequence 00 dataset. The respective camera poses are marked with red.
Representative true-positive and true-negative examples are highlighted.

True-Negative DetectionTrue-Positive Detection

Figure 14. Loop closure detection results on the KITTI sequence 05 dataset. The respective camera poses are marked with red.
Representative true-positive and true-negative examples are highlighted.

True-Negative DetectionTrue-Positive Detection

Figure 15. Representative true-positive and true-negative detections on Lip6 Indoor. The dataset does not provide any
odometry ground-truth.

True-Negative DetectionTrue-Positive Detection

Figure 16. Representative true-positive and true-negative detections on Lip6 Outdoor. The dataset does not provide any
odometry ground-truth.
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Table 4. Comparative results showing the achieved Recall rates (%) for 100% Precision accuracy. Entries highlighted with bold
indicate the best performing approach for each dataset.

BC NC L6I L6O MG6L CC KITTI00 KITTI05

Cummins and Newman (2011)
FAB-MAP 2.0 – – – – 68.52 38.77 – –

Angeli et al. (2008)
SIFT+COLOR – – 36.86 23.59 – – – –

Gálvez-López and Tardós (2012)
DBoW2 81.20 55.92 – – 74.75 31.61 – –

Mur-Artal and Tardós (2014)
DBoW2-ORB 76.60 70.29 – – 81.51 43.03 – –

Khan and Wollherr (2015)
IBuILD – – 41.74 25.58 78.13 38.92 – –

Milford and Wyeth (2012)
SeqSLAM 13.90 55.12 20.91 5.63 15.09 42.80 83.54 87.95

Based on Milford and Wyeth (2012)
SeqSLAM-BoVW 73.15 85.97 54.43 39.95 80.48 60.27 89.29 91.65

Bampis et al. (2016)
S-VWV Baseline 78.10 77.55 45.69 51.92 76.78 68.49 81.54 84.80

Proposed 91.90 92.74 52.22 58.32 87.56 71.14 96.53 97.28

presented results reveal that our algorithm provides nice
scaling capabilities over the selected testing sets. Note
that the sequence matching Recall rates correspond to
the testing evaluation of the trained logistic-regression
classifier. As expected, the highest Recall improvement,
obtained through the image matching step, occurred in the
MG6L dataset since in that case, sequence tracks with small
loop closing overlap are more profound (Fig. 1). Finally,
operational examples for each one of the used datasets are
presented in Fig. 9 through 16. At this point we need to state
once again that L6I and L6O do not offer any odometry
ground-truth and that BV does not contain considerable
loop closure events.

4.2 Comparative Results
In this subsection, the overall performance of our system is
compared against other state-of-the-art techniques. Within
the scope of this work, we aim for a solution capable of
achieving high-quality LCD results while still retaining a
real-time performance for key-frame SLAM applications
(∼100-200ms per frame (Strasdat et al. 2010; Mei et al.
2009; Davison et al. 2007)). For this reason, the methods
described by Cummins and Newman (2011); Angeli et al.
(2008); Milford and Wyeth (2012); Gálvez-López and
Tardós (2012); Mur-Artal and Tardós (2014) and Khan
and Wollherr (2015), as well as our previous preliminary

version (Bampis et al. 2016), were selected for assessment.
As it can be seen in Table 4, our approach achieves
higher Recall rates than any other tested algorithm tangibly
proving the capabilities of the proposed S-VWV to S-
VWV matching. Table entries marked with “−” correspond
to evaluations not available in the literature, while all
the included performance metrics were obtained using a
common loop closure ground-truth. Once again, the BV
dataset was not tested as it does not present sufficient loop
closure events. Among the selected approaches, FAB-MAP
2.0 (Cummins and Newman 2011) and SIFT+COLOR
(Angeli et al. 2008) are both considered as golden standards
for LCD tasks. Additionally, since for the case of FAB-
MAP 2.0 no actual Precision-Recall measurements are
provided by Cummins and Newman (2011) regarding the
used datasets, the presented performance is obtained from
the setup described in work of Gálvez-López and Tardós
(2012). In order to evaluate the performance of SeqSLAM
algorithm (Milford and Wyeth 2012), one of the most
representative sequence-based LCD techniques that groups
camera measurements based on their matching similarities,
we made use of the OpenSeqSLAM2 implementation.
Since the original version was optimized for addressing
the vPR task under changing illumination conditions, rather
than identifying revisited places under different viewpoints
(MacTavish and Barfoot 2014), it is reasonable that the
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SeqSLAM performance is not competitive in many of the
tested datasets. To confirm the arguments presented in
Section 2.2 and to offer fair comparisons, we additionally
implemented a BoVW-based version of SeqSLAM using
the same visual vocabulary with our method and computing
I-VWV to I-VWV L2-norms. This version utilizes the
same elements with the proposed algorithm, though
differs in its key characteristic by adopting a sequence
matching, rather than a sequence description approach.
The best performing parameters for each assessed case
were identified according to the literature. As it can
be seen, the proposed S-VWV description outperforms
BoVW-based SeqSLAM for almost every case, with the
L6I being the only dataset slightly failing. This is due
to the fact that the presented algorithm exploits its
highest potentials, as compared to other sequence based
techniques, in dynamical environments where the visual
words may not be constantly detected by each camera
measurement as illustrated in Fig. 2. The case of L6I
dataset, though, corresponds to a static environment, with
a camera facing forward and traveling through well lighted
corridors. Therefore, the proposed unified description is
unavailing and thus it performs analogously to the BoVW-
based SeqSLAM. Methods DBoW2 (Gálvez-López and
Tardós 2012) and DBoW2-ORB (Mur-Artal and Tardós
2014) also accumulate similarity metrics between single
frames to form a sequence matching score, though in
those cases, image groups are formulated based on their
time intervals. Finally, the IBuILD method (Khan and
Wollherr 2015) corresponds to dynamical vocabulary
creation approach, capable of running in real-time, while
the S-VWV Baseline method (Bampis et al. 2016) also
incorporates the presented S-VWV based description, yet,
lacks an adoptive parameterization since every sequence
was distinguished based on a fixed traversed distance.

5 Algorithm Efficiency and Mobile Device
Implementation

In addition to effective similarity properties, our first
level of sequence-to-sequence matching allows for a
more efficient implementation in terms of computational
complexity. More specifically, one can consider the
proposed S-VWV comparisons as a means of rejecting
large trajectory regions that are different in the general
view, followed by a supplementary examination of the
individual image-members. Taking into account an example
of a long traversed route with nc camera poses, we can
evaluate the number of comparisons that a generic image-
to-image based method and the proposed one need to
perform. In the first case, each individually generated
I-VWV have to be compared with the whole database in
order to find the most similar match, leading to a total of

(a) Recall rates (corresponding to 100% Precision) for different
numbers of required co-occurring images. Note the Y axis’
logarithmic scale.

(b) Achieved speedup for different numbers of required
co-occurring images. Note the Y axis’ logarithmic scale.

Figure 17. Reducing the visual words’ multitude during the
sequence matching procedure. The X axis refers to the
number of frames a visual word needs to co-occur in order to
be included in the respective S-VWV. By considering only the
visual words co-occurring in more than one frames, we can
double the computational frequency of the sequence matching
functionality without compromising the system’s performance.

up to nc2/2 similarity measurements. On the contrary, our
method is capable of detecting revisited trajectory regions
using only

(
nc/M̄

)2
/2 comparisons, where M̄ denotes

the average size of the produced sequences. Subsequently,
only for the identified revisited scenes, the individual image
associations corresponding to loop closures are produced.
Even for the extreme case in which a match has been found
for all the sequences, the additional computational steps for
producing image pairs are in the order of nc ∗ M̄ , which
accumulated to

(
nc/M̄

)2
/2, are still fewer than the nc2/2

required by the brute-forcing image-to-image matching for
prolonged datasets. Naturally, the inverse indexes are going
to reduce the execution time of both approaches in the same
manner. Thus, their effect is omitted from this example.

The nature of the presented sequence description
algorithm provides an additional means for further reducing
the computational complexity of the S-VWV matching
functionality. During the formulation of each sequence,
it is natural to expect a set of visual words to be
observed by multiple image-members. Such visual words
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Table 5. Time-profiling for 15K images of New College
dataset.

Time (ms/frame)

Mean Std Min Max

Feature
Extraction

oFAST detection
ORB description
Total

11.38
7.21

18.58

5.05
2.45
4.84

4.59
3.63
8.29

30.08
21.21
52.53

VWVs
Calculation

Tree Traversal
Form I-VWV
Form S-VWV
Total

3.84
0.05
0.07
3.96

0.76
0.02
0.05
0.77

1.43
0.03
0.001
1.43

17.49
0.61
0.78
17.49

Matching

Inverse Indexing
Seq. Matching
Image Matching
Total

0.09
4.87
0.02
4.99

0.34
7.72
0.26
8.04

0.83
0.66
0.20
2.81

3.55
12.47
8.54
12.56

Whole application 27.44 8.74 13.66 58.01

Figure 18. Execution time per image for each one of the main
processing steps of the proposed algorithm, measured for
15K images of the New College dataset.

typically correspond to better localized ORB descriptors
in the vocabulary clustering space and they are originated
from more representative sequence landmarks. Thus, a
significant speedup can be achieved, during the sequence
matching procedure, by only considering visual words
observed from more than one image-members. As it can
be seen in Fig. 17, the exclusion of visual words occurring
in only one image has minor effect on the achieved Recall
rates, while at the same time increases the computational
frequency of the sequence matching functionality by more
than 100%.

Since our system is capable of detecting loop closure
events using only a monocular camera while retaining
a low computational complexity, an application for
mobile devices was developed in order to provide a
complete and fully functional system. Using the Android
Development Kit provided by Google’s Project Tango
(Google 2017) we implemented a C++ based algorithm3

utilizing the parallelization capabilities of the ARM-NEON
co-processor. The application was specifically designed

so as to respect the limitations in terms of available
RAM and processing power that a mobile device induces.
In particular, we used a sparse representation for each
of the description vectors (S-VWVs and I-VWVs) while
the ARM-NEON co-processor, built upon the SIMD
architecture, undertook the parallelizable procedures, e.g.
the ORB features detection/description and the Hamming
distance calculation for the vocabulary tree traversal. In
addition, we assigned the sequence matching procedure
on a dedicated thread running concurrently with the rest
of our algorithm (but not on a different core). Since the
sequence matching is triggered each time a new sequence
is completed and not for every input frame, it is natural to
burden the execution time unevenly. During the formulation
of a new sequence, no similarity score calculations are
performed allowing the implementation to run in less
than 25ms. Every time a new sequence is completed, an
instantaneous overhead appears, preventing our application
from running in constant time. Thus, using two individual
threads in a pipeline manner, the most recently created
sequence is compared to the database and the loop closures
–if any– are detected while the formulation of a new S-
VWV occurs. In this way, even though we do not achieve
any speedup over the total execution time, the necessary
calculations are evenly spread along the acquisition of
every input image. Extension 1 shows an instance of our
application running on the Tango device in a real-world
scenario.

Using the implementation described above, we formu-
lated a time-profiling experiment on the biggest tested
dataset. Table 5 presents the execution time obtained by
each of the processing stages for 15K images of the NC
dataset (padding the available RAM of the device). As
one can observe, the most demanding procedure of our
algorithm is the Feature Extraction, which can be con-
sidered as pre-computed for many SLAM architectures.
Although the Matching procedure may require a maximum
of 12.56ms, only its average cost is perceptible by the
whole application due to the used pipelining. In addition, by
forcing a serialized execution of the two pipelining threads,
we obtained the timing measurements presented in Fig. 18
for each one of the main algorithm’s procedures.

6 Discussion
In this paper, a novel sequence description technique is
proposed which allows us for the first time to combine
the entire visual information of a place into a single
descriptor, while still retaining a feature based approach.
The newly introduced module of S-VWV allows for a two-
layered LCD system that firstly recognizes revisited scenes
and later associates the individual loop closing camera
poses. Instead of adopting a spatiotemporal approach so
as to distinguish the individual sequences, an efficient
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visual word variance metric was selected, separating
the input stream with respect to the visual content’s
alterations. In addition, taking into account the temporal
consistency constraint that successively recognized camera
measurements need to obey, a novel similarity filtering was
proposed. By considering the filter’s kernel as a binary
classifier, its coefficients were learned using a cost function
minimization scheme. Finally, an implementation of the
presented algorithm was developed and tested on a mobile
device, utilizing the parallelization properties of the SIMD
architecture and proving the computational efficiency of our
method.

By successfully describing an image sequence, rather
than matching single instances and accumulating their
similarity scores, our method provides a unified solution.
Yet, its true potentials are fully exploited when the executed
trajectory includes long loop closing tracks. In contrast
with the rest of the evaluated datasets, BC contains
many sharp and rapid turning movements (especially
during the end of the traversed route as shown in
Fig. 5a) causing the used sequence distinction function
to over-segment the trajectory into scenes that actually
correspond to the same place. An analogous example can
be considered with a camera rotating around its yaw axis
and causing the formulation of multiple sequences, while
still remaining into the same physical place. In those cases,
the presented method descends into a simple BoVW-based
approach, with the formulated S-VWVs retaining a similar
structure to the corresponding I-VWVs. Even though
this aimless segmentation does not affect the system’s
performance (see Section 4.1.2), it may unnecessarily
increase the computational complexity of the sequence
matching procedure by expanding the searching database
space. Possible ways to avoid such extreme cases are the
tested “Windowed Progressive L2-score” and “Windowed
Visual Word Variance” approaches. A Scale-Space filtering
(Witkin 1984) over the above measurements can also be
useful in order to achieve a dynamical window size. Having
as principal objective the identification of image groups
that share a sufficient number of common visual words,
further co-visibility and graph-connectivity measurements
can be applied and evaluated (Chandrasekhar et al. 2014b;
Erkent and Bozma 2015), especially in cases of off-line map
optimization or RL scenarios, where the traversed map is
fully formulated beforehand (Chandrasekhar et al. 2014a;
Johns and Yang 2011; Moon et al. 2016).

Given our choice of ORB local features, a scale
and rotation invariant description is achieved. Such
a mechanism, though, does not promote a direction
invariant LCD system, especially when the respective robot
is equipped with a monocular frontal-oriented camera.
This is owned to the fact that the detected patches’
appearance, although originated from the same place,

changes significantly when observed from two opposite
directions, leading many vPR systems to exclude or fail
in identifying those revisited paths (Lynen et al. 2014;
Fraundorfer et al. 2007). Even though such cases are not
commonly encountered, thus not handled by the proposed
and other sequence-based vPR techniques (Newman
et al. 2006), possible solutions include the utilization of
lateral-oriented/panoramic cameras (Lynen et al. 2014;
Agarwal et al. 2015), or the estimation of the detected
patches’ orientation (Davison et al. 2007) in order to predict
their appearance changes. Using the proposed system on
such events would additional imply an appropriate temporal
consistency filter structure. Thus, our filter needs to be
retrained accordingly (probably converging into a higher
window size) or applied subsequently twice, once with the
structure of eq. 11 and once with the same kernel flipped on
both axes, in order to additionally promote mS sub-matrices
with high antidiagonal similarity metrics.

An important characteristic of the introduced S-VWV
based LCD approach is its fundamental generality. In
contrast with the sequence matching approaches (that
accumulate similarity metrics between multiple images),
the proposed descriptor can efficiently adapt to a distributed
architecture, such as the recent work of Cieslewski and
Scaramuzza (2017), and allow for a decentralized vPR
system of multiple agents. Additionally, since such a
description vector can be combined with any kind of
vocabulary, an extension of our work would be to utilize
visual words that present invariance over illumination
or other environmental changes (Linegar et al. 2016;
McManus et al. 2015; Yue-Hei Ng et al. 2015; Lee
et al. 2013). As a final thought, the notion of a sequence
description could serve as a basis for introducing new
variables in the LCD procedure. Approaches capable of
quantizing time depended measurements into the S-VWVs,
such as the optical flow or the robot’s ego-motion, can be
investigated with the view to further assist the matching
functionality.

Appendix A: Index to multimedia
Extensions

Table 6. Multimedia Extensions

Extension Media type Description

1 Video
Operational Example
on a Mobile Device

Notes

1. An improved odometry, found at Smith et al. (2009) website,
was assigned to NC dataset for visualization purposes.
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2. The OpenSeqSLAM implementation can be found at
http://openslam.org/openseqslam.html.

3. The reader can visit https://github.com/loukbabi/PREVIeW to
download and review two C++ versions of our algorithm,
viz. desktop-based and mobile-based, with the acronym
“PREVIeW - Place Recognition with unifiEd sequence VIsual
Words”.
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